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Abstract
We study the optical conductivity of the one-band Hubbard model in the Néel
state at half filling at T = 0 using the dynamical mean-field theory. For small
values of the Coulomb parameter clear signatures of a Slater insulator expected
from a weak-coupling theory are found, while the strongly correlated system can
be well described in terms of a Mott–Heisenberg picture. However, in contrast
to the paramagnet, we do not find any evidence for a transition between these
two limiting cases but rather a smooth crossover as a function of the Coulomb
interaction.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The microscopic description of magnetism and metal–insulator transitions (MITs) constitutes
one of the major research activities in modern solid state theory. For example, transition
metal compounds like V2O3, LaTiO3, NiS2−x Sex or the cuprates show MITs and magnetic
order depending on composition, pressure or other control parameters [1]. One interesting
and controversial question concerns the description of the optical properties of these materials
[2–4], in particular whether the fundamental physics is governed by the broken translational
symmetry e.g. in the Néel state or rather by correlations [5, 6], i.e. the formation of so-called
Hubbard bands with an energy gap of the order of the relevant Coulomb repulsion.

The simplest model showing both magnetism and a correlation induced MIT is the one-
band Hubbard model [4]

H = −
∑
i, j,σ

ti j c
†
iσ c jσ +

U

2

∑
iσ

niσ ni σ̄ , (1)

where c(†)
iσ annihilates (creates) an electron at site i with spin σ , niσ = c†

iσ ciσ , ti j denotes the
hopping amplitude between sites i and j and U is the local Coulomb repulsion. Usually, one
ignores longer-range hopping processes and concentrates on nearest-neighbour hopping only.
Considerable progress in understanding the physics of this simple but nevertheless non-trivial
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Figure 1. Schematic DMFT phase diagram of the Hubbard model with nearest-neighbour hopping
on a simple cubic lattice. PM denotes the paramagnetic metal, AFI the antiferromagnetic insulator,
FM the ferromagnetic metal and AF/PS phase-separated antiferromagnetism.

model has been achieved in the last decade through the development of the dynamical mean-
field theory (DMFT) [7–9]. In particular, the phase diagram for the Hubbard model on a
simple cubic lattice with nearest-neighbour hopping is very well understood [8–10]. The
major results are compiled in the schematic phase diagram in figure 1. At half filling the
physics is dominated by an antiferromagnetic insulating (AFI) phase for all U > 0. For finite
doping, the antiferromagnetic phase persists up to a critical doping δc [10, 11] and in addition
shows phase separation [11, 12]. For very large values of U the antiferromagnetic phase is
replaced by a small region of Nagaoka type ferromagnetism [13, 14].

An appealing property of the DMFT is the possibility to calculate transport quantities in
a very simple fashion. Due to the local nature of the theory, vertex corrections to the leading
particle–hole bubble of the current–current correlation function vanish identically [8, 15],
i.e. one needs to calculate the bare bubble only. This has been extensively used to study the
optical conductivity and various other transport properties in the paramagnetic phase of the
Hubbard model [8, 9, 16]. On the other hand, up to now a comparable investigation of the
optical properties of symmetry broken phases, in particular the Néel state at half filling, has
not been performed. However, such an investigation is interesting for several reasons. First,
the insulating phase in real materials is in many cases accompanied by magnetic or orbital
ordering, typically of the Néel type. To what extent the model (1) can describe the optical
properties of ordered insulating phases has up to now not been studied in detail. Second, it is
well known that the restriction of the Hubbard model to the paramagnetic state at half filling
shows an MIT [9, 10, 17, 18] at a finite critical Uc > 0 which is of first order [9, 17]. It might
be argued that for the Néel state a similar situation can occur. At small U a weak-coupling
theory is expected to give accurate results, leading to a band or Slater insulator [2] due to the
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Figure 2. Left: schematic view of the AB sublattice decomposition suitable for the treatment of
the Néel state. Right: magnetic Brillouin zone (MBZ, 1. Brillouin zone of the Néel state).

doubled unit cell in the Néel state. At large U , on the other hand, the Hubbard model is known
to reduce to an effective Heisenberg model [19] with localized moments from the onset. It is
an open question whether these two limits are linked continuously or via a phase transition at
some finite value of the Coulomb interaction U .

The paper is organized as follows: in the next section the derivation of an expression for
the optical conductivity in the Néel state is presented. The results obtained for the optical
conductivity of the Hubbard model with nearest-neighbour hopping on a simple cubic lattice
at half filling are presented and discussed in section 3. A conclusion and outlook finish the
paper in section 4.

2. Optical conductivity for the Néel state in DMFT

In the Néel state, the DMFT equations have to be modified to account for two inequivalent
sublattices A and B (see figure 2, left-hand panel) with self-energies �A �= �B [9, 20].
To this end, we introduce operators a(†)

iσ and b(†)

iσ which act on sublattices A and B respectively.
In the case of nearest-neighbour hopping only, the kinetic part of the Hamiltonian (1) can then
be written as

Ht = −t
∑
〈i, j〉

∑
σ

(a†
iσ b jσ + b†

jσ aiσ ).

After Fourier transforming this expression we obtain

Ht =
∑

σ

∑
k

′
�

†
kσ

(
0 εk

εk 0

)
�kσ ,

where we introduced the spinors

�
†
kσ = (a†

kσ , b†
kσ ), �kσ =

(
akσ

bkσ

)

and εk is the dispersion on the bipartite lattice. The prime on the sum indicates that the
summation is over all values of k in the magnetic Brillouin zone (MBZ) (see figure 2, right-
hand panel). Within this notation, the Green function becomes a matrix in the two sublattices,

Gkσ (z) =
(

ζ A
σ −εk

−εk ζ B
σ

)−1

, (2)
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where ζ
A/B
σ = z + µ − �

A/B
σ . From now on we employ the symmetry ζ A

σ = ζ B
σ̄ ≡ ζσ of the

Néel state and drop the indices A/B. Using this formalism, the current operator is given by

j = e
∑

σ

∑
k

′
�

†
kσ

(
0 vk

vk 0

)
�kσ

with vk = ∇kεk as usual. If we consider a lattice for which the conductivity tensor is diagonal,
the elements σii ≡ σ can be calculated from (D is the spatial dimension of the lattice)

D · σ(ω) = Re
1

iω

D∑
l=1

〈〈 jl; jl〉〉ω+iδ

with the current–current correlation function

〈〈 jl; jl〉〉iν = e2
∑
σσ ′

∑
kk′

′
vl

kv
l
k′ 〈〈a†

kσ bkσ + b†
kσ akσ ; a†

k′σ ′bk′σ ′ + b†
k′σ ′ak′σ ′ 〉〉iν .

Again, due to the symmetry of the lattice, the index l can be dropped. The most
important simplification arises from the locality of two-particle self-energies within the
DMFT [15, 20, 21]. Note that in the present formulation the proper locality of the two-particle
self-energies is still ensured, because in the DMFT as defined by equation (2) no dynamical
correlations between the A and B sublattices are introduced. In analogy to the paramagnetic
case this allows us to carry out the k sums in diagrams containing two-particle self-energy
insertions independently at each vertex. Since the single-particle propagators only depend on
k through the even function εk and the vk are of odd parity, the sum over their product vanishes.
As a result, we obtain the exact expression for the current–current correlation function in the
DMFT,

〈〈 j ; j〉〉iν = −e2

β

∑
ωn

∑
σ

∑
k

′
v2

k[〈〈akσ ; a†
kσ 〉〉iωn +iν〈〈bkσ ; b†

kσ 〉〉iωn

+ 〈〈bkσ ; b†
kσ 〉〉iωn +iν〈〈akσ ; a†

kσ 〉〉iωn + 〈〈bkσ ; a†
kσ 〉〉iωn +iν〈〈bkσ ; a†

kσ 〉〉iωn

+ 〈〈akσ ; b†
kσ 〉〉iωn +iν〈〈akσ ; b†

kσ 〉〉iωn ].

In terms of the Green function matrix elements in (2) we can rewrite this as

〈〈 j ; j〉〉iν = −e2

β

∑
ωn

∑
σ

∑
k

′
v2

k[GAA
kσ (iωn + iν)GBB

kσ (iωn) + GBB
kσ (iωn + iν)GAA

kσ (iωn)

+ GBA
kσ (iωn + iν)GBA

kσ (iωn) + GAB
kσ (iωn + iν)GAB

kσ (iωn)]

where

GAA
kσ (z) = ζσ̄

ζσ ζσ̄ − ε2
k

, GBB
kσ (z) = ζσ

ζσ ζσ̄ − ε2
k

and

GBA
kσ (z) = GAB

kσ (z) = εk

ζσ ζσ̄ − ε2
k

.

Next, we convert the k sum into an energy integral by introducing the average squared velocity,

〈v2〉ε := 1

D · N

∑
k

′
v2

kδ(ε − εk). (3)

Making use furthermore of the spectral representation of the Green functions, the frequency
sum can be evaluated in a straightforward way and finally we obtain for the conductivity

σ(ω) = c
∑

σ

∫ 0

−∞
dε 〈v2〉ε

∫ ∞

−∞
dω′ f (ω′) − f (ω′ + ω)

ω

× [Aσ (ε, ω′)Aσ̄ (ε, ω′ + ω) + Bσ (ε, ω′)Bσ (ε, ω′ + ω)] (4)
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with

Aσ (ε, ω) = − 1

π
Im GAA

σ (ε, ω + iδ)

and

Bσ (ε, ω) = − 1

π
Im GAB

σ (ε, ω + iδ).

Here f (ω) is the Fermi function and c collects various constants. Note that the form (4) is
reminiscent of the results found in the case of superconductivity, which is discussed at length
e.g. in the book by Mahan [22]. Consequently, one can expect to obtain similar features from
the evaluation of (4).

In order to proceed with the calculation, it is necessary to specify the actual lattice
structure and the corresponding non-interacting dispersion in equation (3). For the hypercubic
lattice [21], 〈v2〉ε ∝ ρ(0)(ε) is a simple Gaussian, and the integration over ε can be performed
analytically. For the details of this calculation see appendix A.

3. Results

In the following we present results for the optical properties of the Hubbard model on a simple
hypercubic lattice with nearest-neighbour hopping at half filling and T = 0 in the DMFT. The
hopping matrix element is chosen as t = t∗/

√
4D, which ensures the correct scaling of the

kinetic energy in the limit D → ∞ [7]. As energy unit it is convenient to use the bandwidth W
of the system at U = 0. Since the Gaussian density of states (DOS) of the simple hypercubic
lattice in the limit of infinite spatial dimensions has no real band edges, we take W = 4t∗ as a
reasonable value. Note that for this choice of W ,

(i) the spectral weight of the Gaussian is exhausted by 99% between ω = ±W/2 and
(ii) the paramagnetic MIT will occur at Uc ≈ 4t∗ = W [10].

The effective quantum impurity model of the DMFT is solved using Wilson’s numerical
renormalization group (NRG) method [23], suitably extended for dynamical quantities and
spin polarization [24, 25]. The calculations were performed with a discretization parameter
� = 2, keeping 800 states. Dynamical quantities were calculated with a Gaussian logarithmic
broadening of 0.6. Occasional checks with 1600 states or smaller � showed sufficient
robustness of the results.

3.1. Single-particle properties

Before discussing the optical conductivity calculated from (4), it is helpful to review the single-
particle properties. The spin-resolved one-particle DOS calculated at T = 0 for different
values of U shows the expected insulating behaviour with a clear gap at the Fermi energy for
all U > 0. In particular, for small values of U  W , the DOS shows nicely developed nesting
singularities at the gap edges, which qualitatively follow the predictions of a weak-coupling
theory [11]. With increasing U these features get more and more smeared out, and for U � W
the spectra resemble those of the Mott insulator [8]. Note that the appearance of a gap in the
DOS is of course accompanied by a vanishing imaginary part of the one-particle self-energy
in this region. Neither the development of the DOS nor the magnetization as a function of
U shown in the inset to figure 3 provide any evidence as to whether the limits U  W and
U � W will be linked smoothly or by some kind of transition.
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Figure 3. Spin-resolved DOS for the antiferromagnetically ordered phase of the half-filled Hubbard
model for different values of U/W . The inset shows the magnetization as a function of U/W .

3.2. Spin dynamics

Another interesting quantity is the dynamical magnetic susceptibility, whose low-energy
behaviour gives further insight into possible differences in spin and charge dynamics. In
principle, it is also possible to calculate this quantity as a function of wavevector q within
the DMFT [9, 10]. However, this requires the calculation of the local irreducible particle–
hole self-energy [20], which is currently not possible within the NRG. Nevertheless, for the
current investigation, a reasonable approximation can be obtained from the local magnetic
susceptibility,

χ⊥(z) = 1

N

∑
q

χ⊥(q, z).

Since the ground state of our system is the Néel state, spin excitations require a minimum
excitation energy, the spin gap �s, which conventionally is read off Im χ⊥(Q, ω+iδ) evaluated
at the antiferromagnetic wavevector Q = (π, π, . . .). However, the gaps at other q vectors
will be equal to or larger than �s. Thus, even after summing over all q-values, the size of
the gap in Im χ⊥(ω + iδ) will be determined by �s. The quantity Im χ⊥(ω + iδ) on the other
hand can easily be calculated from the NRG once the DMFT has converged. The results for
three typical values of U/W are shown in figure 4, displaying a nice spin gap �s as ω → 0.
Evidently, the value of �s first increases with increasing U but then decreases again, as is to be
expected from the mapping of the Hubbard model to an antiferromagnetic Heisenberg model
with J ∝ 1/U at large U . From the calculated Im χ⊥(ω + iδ) one can directly extract the
values for �s(U). The results will be discussed below together with the charge gap obtained
from the optical conductivity (see figure 7).
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U/W = 0.25, 0.5 and 1, which shows a well defined gap �s as ω → 0. Only the part for ω > 0
is shown. Note that �s first increases with increasing U , but eventually decreases again.
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Figure 5. Optical conductivity of the half-filled Hubbard model in the Néel phase for T = 0 as a
function of U . The full curves represent the calculated data, the dashed curves a fit with the function
ω · σ(ω) = Im{eiφ(ω − ω0 + iγ )−α} (see text). The inset shows the curves for U/W = 0.25 and
0.75 using a logarithmic scaling.

3.3. Optical conductivity and optical gap

The optical conductivity resulting from the spectra in figure 3 is shown in figure 5. Apparently,
the overall behaviour seen in the DOS has its counterpart in σ(ω). For small values of U , one
finds a threshold behaviour with a singularity, whereas for large U the optical conductivity
closely resembles that found in the paramagnetic insulator [10]. Obviously, there are at least
two interesting features in σ(ω): first the behaviour of σ(ω) in the vicinity of the maximum,
and second the actual value of the optical gap, i.e. the energy at which σ(ω) = 0.

In order to address the first point we adopt the following line of reasoning. In the Hartree
limit, i.e. without an imaginary part of the self-energy, an approximate evaluation of (4) yields

ω · σ(ω) ∝ �(ω − 2�0)√
ω − 2�0

with �0 = Ums/2 and ms = 〈n↑ − n↓〉. Since this behaviour is goverened by square root
singularities in the integrand in (4) (see e.g. the explicit formula derived in the appendix), it is
reasonable to assume that for a finite imaginary part of the self-energy the above singularity
will become an algebraic function

ω · σ(ω) ∝ Im

{
eiφ

(ω − ω0 + iγ )α

}
(5)
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Figure 6. Dependence of the fit parameters ω0, α and φ in (5) on U . The curves are meant as
guides to the eye. Note the rather well defined change in (α, φ) from (α, φ) = (1/2, π/2) to
(α, φ) = (1, 0) around U/W = 0.75.

with a general exponent α. The quantity γ approximately takes care of the finite imaginary
part introduced by the one-particle self-energy and φ allows for a more complex mixing of
real and imaginary parts in the integral (4). The function (5) describes the behaviour of σ(ω)

in the vicinity of the maximum very nicely for all values of U (see dashed curves in figure 5);
note that from the inset to figure 5 it is evident that for small U this algebraic form has the
tendency to overestimate the optical gap, while at large U it is clearly underestimated.

Let us now turn to the behaviour of the parameters ω0, α and φ shown in figure 6. As
U → 0, we expect that ω0 = 2�0 = Ums, α = 1/2 and φ = π/2, i.e. ω · σ(ω) ∝
Re(ω − ω0 + iδ)−1/2 = �(ω − ω0)/

√
ω − ω0. We indeed find the anticipated square-root

singularity; however, even for small U/W , the value of ω0 significantly deviates from the
Hartree value, being systematically smaller but obviously approaching it as U → 0.

For values U > W , the behaviour of ω · σ(ω) is best described by a Lorentzian, which
becomes apparent from the values of α and φ obtained in this region, namely α ≈ 1 and
φ = 0, meaning ω ·σ(ω) ∝ Im(ω −ω0 + iγ )−1 ∝ 1/((ω −ω0)

2 + γ 2). In addition, the results
for ω0 together with ms ≈ 1 indicate that ω0 ≈ U , in agreement with the predictions of the
Mott–Hubbard picture [9].

The behaviour of the optical gap �c, together with the spin gap �s obtained from
Im χ⊥(ω + iδ) and the double occupancy 〈n↑n↓〉, is displayed in figure 7. The details of
the method used to obtain �c are discussed in appendix B.

For small U/W , the optical gap is exactly twice as large as the spin gap and, as becomes
apparent from the inset, approaches the Hartree value msU as U → 0. Again both quantities
deviate systematically and by the same amount from the expected Hartree values even for
the smallest U . Thus, even for U/W  1 correlation effects are important and significantly
modify the predictions from Hartree theory [12, 26]. For large U , on the other hand, we find
�c ∝ U − W , consistent with Mott–Hubbard localized states; furthermore, �s ∝ 1/U as
expected from the mean-field theory of the Heisenberg model with a J ∝ 1/U .

We find, however, no evidence that the Slater limit at U/W → 0 and the Mott–Heisenberg
limit at U/W → ∞ are separated by some kind of phase transition. All results, including
the variation of 〈n↑n↓〉 seen in figure 7, rather indicate that a smooth crossover takes place for
U/W ≈ 3/4.

4. Conclusion and outlook

While in the paramagnetic phase of the Hubbard model at half filling,when artificially extended
to T = 0, a true phase transition from a correlated metal to a Mott–Hubbard insulator at
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Figure 7. Optical gap �c/2 (circles), spin gap �s (squares) and double occupancy (diamonds) as
a function of U . The inset shows the gaps scaled with Ums/2. Dotted curves are meant as guides
to the eye. For small U both charge and spin gap are identical, while for large U we find �c ∝ U
(see inset) and �s ∝ 1/U (full curve in main panel).

Uc ≈ W has been established, the situation in the physically more relevant Néel state has not
been investigated in similar detail up to now. As a first step in this direction the properties in
the ground state of the Hubbard model at half filling with particle–hole symmetry have been
discussed. We did confirm that the physical properties at small and large values of the Coulomb
parameter U can be well described within a Slater and Mott–Heisenberg picture, respectively.
In contrast to the paramagnetic Mott–Hubbard MIT we could not find any solid evidence for
a similar transition in the Néel state; our data rather suggest a smooth crossover, which occurs
at a value U � W . Even the double occupancy, which in the case of the paramagnetic MIT is
an indicator of a phase transition, does not show any sign of an anomaly here.

A novel quantity we discussed was the spin gap, which we extracted from the local
transverse spin susceptibility. The general behaviour and size agree very well with exactly
known limits. This shows that at least in cases where a well defined spin gap exists that
becomes minimal at special points in the BZ, even the inspection of purely local dynamical
susceptibilities can be sufficient.

There are, however, still several unanswered questions. First, the analytic form of the
optical conductivity close to the optical gap and the precise value of this gap could not be
obtained at present due to numerical problems when evaluating the integral (4). In particular,
for a more quantitative comparison with experiment this has to be improved in future work.
Second, comparison with the data for V2O3 from [5] shows a nice agreement for the kinetic
energy (obtained using the optical sum rule), but fails completely concerning the size of the
optical gap. This is shown in figure 8, where we plot the kinetic energy scaled to its value for
U = 0 (circles and left-hand scale) and �c/W (squares and right-hand scale) versus U/W .
The open circle and square represent data for the kinetic energy and charge gap, respectively,
extracted from [5] for a V2O3 sample with TN ≈ 50 K. Obviously, with the present model,
one greatly overestimates the optical gap at intermediate values of U .

Of course the present investigation did concentrate on the simplest situation, namely
a system with perfect particle–hole symmetry. In reality, electron hopping beyond nearest
neighbours will destroy antiferromagnetism at small values of U and consequently lead to
different gaps at intermediate values of U . On the other hand, the gaps at large U are controlled
by Mott–Hubbard physics and will most likely change only little. A similar line of argument
has in fact been invoked in [5], too. A recent study of the properties of the magnetically
frustrated Hubbard model indicates that this scenario is indeed very likely [27]. Evidently, a
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Figure 8. Kinetic energy scaled to its value at U = 0 (circles and left-hand scale) and full optical
gap �c/W (squares and right-hand scale) versus U/W . The open circle and square with errorbars
represent values for the scaled kinetic energy and �c/W respectively, extracted from [5] for the
sample of V2O3 with TN ≈ 50 K. Note that in [5] D = W/2 and � = �c/2.

further detailed investigation of the optical properties in the Néel state, in particular with more
realistic band structures, is necessary and surely highly interesting. Work along this line is in
progress.
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Appendix A. Further evaluation of (4)

In this appendix we present details of the further evaluation of the energy integrals in
equation (4) for the hypercubic lattice in the limit D → ∞. In that case the DOS becomes a
Gaussian, i.e. we need to calculate the two integrals∫ ∞

−∞
dε e−ε2

Aσ (ε, ω′)Aσ̄ (ε, ω′ + ω)

and ∫ ∞

−∞
dε e−ε2

Bσ (ε, ω′)Bσ (ε, ω′ + ω).

It is now convenient to split up the spectral functions into two parts, i.e.

Aσ (ε, ω) = A−
σ (ε, ω) + A+

σ (ε, ω)

with

A±
σ (ε, ω) = − 1

2π
Im

ζσ̄√
ζσ ζσ̄

(
1√

ζσ ζσ̄ ± ε

)

and ζσ as defined after equation (2). In the same way we write

Bσ (ε, ω) = B−
σ (ε, ω) − B+

σ (ε, ω)
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where now

B±
σ (ε, ω) = − 1

2π
Im

1√
ζσ ζσ̄ ± ε

.

Using this notation and collecting equivalent terms, it can easily be verified that the following
four integrals need to be evaluated:

I1 = 2
∫ ∞

−∞
dε e−ε2

B−
σ (ε, ω′)B−

σ (ε, ω′ + ω),

I2 = −2
∫ ∞

−∞
dε e−ε2

B−
σ (ε, ω′)B+

σ (ε, ω′ + ω),

I3 = 2
∫ ∞

−∞
dε e−ε2

A−
σ (ε, ω′)A−

σ̄ (ε, ω′ + ω)

and

I4 = 2
∫ ∞

−∞
dε e−ε2

A−
σ (ε, ω′)A+

σ̄ (ε, ω′ + ω).

The further evaluation will be demonstrated for the first term. Using the notation

α = √
ζσ ζσ̄ |ω′+iδ and β = √

ζσ ζσ̄ |ω′+ω+iδ

we may write

B−
σ (ε, ω′)B−

σ (ε, ω′ + ω) = − 1

4π2

[(
1

ᾱ − ε
− 1

α − ε

)(
1

β̄ − ε
− 1

β − ε

)]
,

where the bar above a term denotes complex conjugation. The terms inside the brackets can
be expanded further to yield[
− 1

ᾱ − β̄

(
1

ᾱ − ε
− 1

β̄ − ε

)
+

1

ᾱ − β

(
1

ᾱ − ε
− 1

β − ε

)

+
1

α − β̄

(
1

α − ε
− 1

β̄ − ε

)
− 1

α − β

(
1

α − ε
− 1

β − ε

)]
.

If we introduce the Faddeeva function

w(z) = i

π

∫ ∞

−∞
dt

e−t2

z − t
= e−z2

erfc(−iz)

for complex arguments z with Im z > 0, we obtain

I1 = 1

2π i

[
w(α) − w(β)

α − β
− w(α) − w(β)

ᾱ − β̄
− w(α) + w(β)

α − β̄
+

w(α) + w(β)

ᾱ − β

]
,

where we have made use of the relation w(−z̄) = w(z). The remaining three contributions
can be obtained in a similar fashion. Finally, combining complex conjugate expressions, we
arrive at the following result for the four integrals:

I1 = 1

π
Im

(
w(α) − w(β)

α − β
− w(α) + w(β)

α − β̄

)
(A.1)

I2 = − 1

π
Im

(
w(α) − w(β)

α + β̄
− w(α) + w(β)

α + β

)
(A.2)

I3 = 1

π
Im

(
γ δ

w(α) − w(β)

α − β
− γ δ̄

w(α) + w(β)

α − β̄

)
(A.3)

I4 = 1

π
Im

(
γ δ̄

w(α) − w(β)

α + β̄
− γ δ

w(α) + w(β)

α + β

)
(A.4)
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Figure B.1. Results for the fits to σ(ω) (full curves) with function (5) for ω ≈ ω0 (dashed curves)
and �(ω − 2�0) · (ω − 2�0)

5/2 in the low-ω region (dotted curves) for several values of U/W .

where we have introduced

γ = ζσ̄√
ζσ ζσ̄

∣∣∣∣
ω′+iδ

and δ = ζσ√
ζσ ζσ̄

∣∣∣∣
ω′+ω+iδ

.

A further analytical evaluation of the remaining integration over ω′ in equation (4) using
equations (A.1)–(A.4) is possible only for ζσ → ω − σ�0 + iδ. In this case, the square roots
appearing in the functions α and β lead to a typical threshold behaviour of the form [22]

ω · σ(ω) ∝ �(ω − 2�0)√
ω − 2�0

.

The appearance of this threshold singularity also shows that a further numerical evaluation
of the remaining integral over ω′ in equation (4) will become problematic in regions where
the imaginary part of the one-particle self-energy becomes small, because the integrand will
develop a strongly singular behaviour. In particular, this makes a precise numerical evaluation
of the optical conductivity near the threshold impossible.

Appendix B. The optical gap

While the definition of the optical gap is straightforward, the extraction of numbers from the
numerical data appears to be rather problematic for two simple reasons. First, the spectra
calculated with NRG have an unavoidable intrinsic broadening, which becomes especially
severe for the Hubbard bands at larger values of U/W . Second, as ω  ω0, the imaginary
part of the one-particle self-energy becomes negligible, and the singular structure of the
integrand (A.1)–(A.4) entering into (4) makes additional broadening necessary to allow for a
stable numerical integration. Together both effects very efficiently mask the true ω-dependence
close to the optical gap, in particular for larger U/W .

In order to nevertheless have an unambiguous working procedure that allows us to extract
a reasonable approximation to the true optical gap from our numerical data, we postulate that
ω ·σ(ω) ∝ �(ω−2�0) ·(ω−2�0)

α for ω in the region where (5) starts to deviate substantially
from the data and choose a minimal α such that it produces a reasonable fit for all values of U
(see figure B.1 for selected results). We find α = 5/2Note 1 and an optical gap �c which is

1 The value α = 3/2 used in [5] does not lead to a satisfying description.



From Slater to Mott–Heisenberg physics: the antiferromagnetic phase of the Hubbard model 7879

consistent with the spin gap �s as U → 0. The good agreement of these two differently
calculated quantities (see the inset to figure 7) also serves as an a posteriori check for the
procedure used to determine �c. In view of a possible comparison to experimental results [5]
this situation is, of course, not satisfying. For this purpose a more thorough and possibly
analytical evaluation of σ(ω) close to �c would be desirable. Unfortunately, the complicated
form of the integrals in (4) so far have allowed for an analytical evaluation only in the Hartree
limit.
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